Parameter estimation of stochastic differential equation driven by small fractional noise

نویسندگان

چکیده

We study the problem of parametric estimation for continuously observed stochastic processes driven by additive small fractional Brownian motion with Hurst index H∈(0,1)/{12}. Under some assumptions on drift coefficient, we obtain asymptotic normality and moment convergence maximum likelihood estimator parameter when a dispersion coefficient ε→0.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Heat Equation Driven by Fractional Noise and Local Time

The aim of this paper is to study the d-dimensional stochastic heat equation with a multiplicative Gaussian noise which is white in space and it has the covariance of a fractional Brownian motion with Hurst parameter H ∈ (0, 1) in time. Two types of equations are considered. First we consider the equation in the Itô-Skorohod sense, and later in the Stratonovich sense. An explicit chaos developm...

متن کامل

Parameter Estimation of Stochastic Differential Equation

Non-parametric modeling is a method which relies heavily on data and motivated by the smoothness properties in estimating a function which involves spline and non-spline approaches. Spline approach consists of regression spline and smoothing spline. Regression spline with Bayesian approach is considered in the first step of a two-step method in estimating the structural parameters for stochasti...

متن کامل

A singular stochastic differential equation driven by fractional Brownian motion∗

In this paper we study a singular stochastic differential equation driven by an additive fractional Brownian motion with Hurst parameter H > 1 2 . Under some assumptions on the drift, we show that there is a unique solution, which has moments of all orders. We also apply the techniques of Malliavin calculus to prove that the solution has an absolutely continuous law at any time t > 0.

متن کامل

A quasilinear stochastic partial differential equation driven by fractional white noise

We approximate the solution of a quasilinear stochastic partial differential equation driven by fractional Brownian motion BH(t); H ∈ (0, 1), which was calculated via fractional White Noise calculus, see [5].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics

سال: 2022

ISSN: ['1029-4910', '0233-1888', '1026-7786']

DOI: https://doi.org/10.1080/02331888.2022.2098960